Enfoques terapéuticos de la osteoporosis

Angela Lissette Guevara Acurio, Wendy Yadira Ramos Veintimilla, Daniel Asdruval Guevara Leguisano Daniel Asdruval Guevara Leguisano Daniel Asdruval Guevara Leguisano, Pablo Ernesto Pino Falconí

Texto completo:

PDF

Resumen

Introducción: La finalidad del tratamiento de la osteoporosis es la prevención primaria y secundaria de fracturas. Las indicaciones para las intervenciones terapéuticas en la osteoporosis deben derivarse de la determinación del riesgo absoluto de fractura, que tiene en cuenta la evaluación de los factores de riesgo y la densidad ósea.

Objetivo: comentar algunos enfoques terapéuticos empleados en la osteoporosis, destacando el mecanismo de acción del ranelato de estroncio que aumenta la formación de hueso y disminuye la resorción.    

Desarrollo: La causa más común de osteoporosis en las mujeres es la disminución de los niveles de estrógeno durante la menopausia, lo que lleva a un aumento significativo en el recambio de masa ósea y el consiguiente desequilibrio entre la formación y reabsorción ósea con un aumento de la pérdida ósea y el deterioro de la estructura y fuerza óseas.

Conclusiones:  el ranelato de estroncio sigue siendo una opción farmacológica eficaz y viable en la prevención de las fracturas vertebrales y del cuello femoral en mujeres posmenopáusicas y hombres adultos con osteoporosis, en cuanto a indicaciones, contraindicaciones y una cuidadosa evaluación de sus efectos y riesgos. Representa una alternativa a los medicamentos antirresortivos en caso de contraindicación, intolerancia o fracaso.

Palabras clave

osteoporosi; prevención primaria; prevención secundaria de fracturas; ranelato de estroncio

Referencias

González J, Riancho JA. Osteoporosis. Concepto. Epidemiología. Etiología. Manifestaciones clínicas y complicaciones. Medicine [Internet]. 2006 [citado 14 Ago 2021];9(60):3873-9. Disponible en: https://www.sciencedirect.com/science/article/pii/S0211344906743454?via%3Dihub

Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet [Internet]. 2012 [citado 14 Ago 2021];359(9319):1761-7. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0140673602086579

Kanis JA, Johnell O, Oden A, De Laet C, Jonsson B, Dawson A.. Ten-year risk of osteoporotic fracture and the effect of risk factors on screening strategies. Bone [Internet]. 2002 [citado 14 Ago 2021];30(1):251-8. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S8756328201006536

Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int [Internet]. 2013 [citado 14 Ago 2021];24:23-57. Disponible en: https://archive-ouverte.unige.ch/files/downloads/0/0/0/3/3/6/5/3/unige_33653_attachment01.pdf

Marie PJ, Felsenberg D, Brandi M. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporosis Int [Internet]. 2011 [citado 14 Ago 2021];22:1659-67. Disponible en: https://link.springer.com/article/10.1007/s00198-010-1369-0

Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM. The calcium-sensing receptor (CaSR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol [Internet]. 2007 [citado 14 Ago 2021];74(3):438-47. Disponible en: https://www.sciencedirect.com/science/article/pii/S0006295207002602

Hurtel-Lemaire AS, Mentaverri R, Caudrillier A, Cournarie F, Wattel A, Kamel S, et al. The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J Biol Chem [Internet]. 2009 [citado 14 Ago 2021];284(1):575-84. Disponible en: https://www.jbc.org/article/S0021-9258(20)68347-8/fulltext

Atkins GJ, Welldon KJ, Halbout P, Findlay DM. Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporos Int [Internet]. 2009 [citado 14 Ago 2021];20:653-64. Disponible en: https://link.springer.com/article/10.1007/s00198-008-0728-6

Fromigué O, Haÿ E, Barbara A, Marie PJ. Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate. J Biol Chem [Internet]. 2010 [citado 14 Ago 2021];285(33):25251-8. Disponible en: https://www.jbc.org/article/S0021-9258(20)59909-2/fulltext

Geoffroy V, Chappard D, Marty C, Libouban H, Ostertag A, Lalande A, et al. Strontium ranelate decreases the incidence of new caudal vertebral fractures in a growing mouse model with spontaneous fractures by improving bone microarchitecture. Osteoporos [Internet]. 2011; 22:289-97. Disponible en: https://link.springer.com/article/10.1007/s00198-010-1193-6

Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P. Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int [Internet]. 2009 [citado 14 Ago 2021];20:1417-28. Disponible en: https://link.springer.com/article/10.1007/s00198-008-0815-8

Fuchs RK, Allen MR, Condon KW, Reinwald S, Miller LM, McClenathan D, et al. Strontium ranelate does not stimulate bone formation in ovariectomized rats. Osteoporos Int [Internet]. 2008 [citado 14 Ago 2021];19:1331-41. Disponible en: https://link.springer.com/article/10.1007/s00198-008-0602-6

Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis, Treatment of Peripheral Osteoporosis study. J Clin Endocrinol Metab [Internet]. 2005 [citado 14 Ago 2021];90(5):2816-22. Disponible en: https://academic.oup.com/jcem/article/90/5/2816/2836859?login=true

Kaufman JM, Audran M, Bianchi G, Braga V, Diaz-Curiel M, Francis RM, et al. Efficacy and safety of strontium ranelate in the treatment of osteoporosis in men. J Clin Endocrinol Metab [Internet]. 2013 [citado 14 Ago 2021];98(2):592-601. Disponible en: https://academic.oup.com/jcem/article-abstract/98/2/592/2833105

Reginster JY, Bruyère O, Sawicki A, Roces-Varela A, Fardellone P, et al. Long-term treatment of postmenopausal osteoporosis with strontium ranelate: results at 8 years. Bone [Internet]. 2009 [citado 14 Ago 2021];45(6):1059-64. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S875632820901816X

Bruyère O, Roux C, Badurski J, Isaia G, de Vernejoul MC,et al. Relationship between change in femoral neckbone mineral density and hip fracture incidence duringtreatment with strontium ranelate. Curr Med Res Opin [Internet]. 2007 [citado 14 Ago 2021];23:3041-45. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17967221/

Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Sppector TD, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med [Internet]. 2004 [citado 14 Ago 2021];350:459-68. Disponible en: https://www.nejm.org/doi/full/10.1056/NEJMoa022436

Bruyère O, Collette J, Reginster JY. Strontium ranelate uncouples bone resorption from bone formation in osteoporotic patients with or without clinical risk factors. Arthritis Rheum. 2013;65:S521.

Brennan TC, Rybchyn MS, Green W, Atwa S, Conigrave AD, Mason RS. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol [Internet]. 2009 [citado 14 Ago 2021];157(7):1291-300. Disponible en: https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/j.1476-5381.2009.00305.x

Arlot ME, Jiang Y, Genant HK, Zhao J, Burt-Pichat B, Roux JP, et al. Histomorphometric and microCT analysis of bone biopsies from postmenopausal osteoporotic women treated with strontium ranelate. J Bone Miner Res [Internet]. 2008 [citado 14 Ago 2021];23(2):215-22. Disponible en: https://asbmr.onlinelibrary.wiley.com/doi/abs/10.1359/jbmr.071012

Rizzoli R, Chapurlat RD, Laroche JM, Krieg MA, Thomas T, Frieling I, et al. Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis. Results of a 2-year study. Osteoporos Int [Internet]. 2012 [citado 14 Ago 2021];23:305-5. Disponible en: https://link.springer.com/article/10.1007/s00198-011-1758-z

Chavassieux P, Meunier PJ, Roux JP, Portero-Muzy N, Pierre M, Chapurlat R. Bone histomorphometry of transiliac paired bone biopsies after 6 or 12 months of treatment with oral strontium ranelate in 387 osteoporotic women: randomized comparison to alendronate. J Bone Miner Res [Internet]. 2014 [citado 14 Ago 2021];29(3):618-28. Disponible en: https://asbmr.onlinelibrary.wiley.com/doi/full/10.1002/jbmr.2074

Ammann P, Rizzoli R. Strontium ranelate treatment improves bone material level properties in human transiliac bone biopsy specimens. Bone Abstract [Internet]. 2013 [citado 14 Ago 2021];1:S43. Disponible en: http://www.bone-abstracts.org/ba/0001/ba0001PP53.htm

Reginster JY, Felsenberg D, Boonen S, Diez-Perez A, Rizzoli R, Brandi ML, et al. Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: Results of a five-year, randomized, placebo-controlled trial. Arthritis [Internet]. 2008 [citado 14 Ago 2021];58(6):1687-95. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/art.23461

Reginster JY, Kaufman JM, Goemaere S, Devogelaer JP, Benhamou CL, Felsenberg D, et al. Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis. Osteoporos Int [Internet]. 2012 [citado 14 Ago 2021];23:1115-22. Disponible en: https://link.springer.com/article/10.1007/s00198-011-1847-z

Meunier PJ, Roux C, Ortolani S, Diaz-Curiel M, Compston J, Marquis P, et al. Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporos Int [Internet]. 2009 [citado 14 Ago 2021];20:1663-73. Disponible en: https://link.springer.com/article/10.1007/s00198-008-0825-6

Roux C, Reginster JY, Fechtenbaum J, Kolta S, Sawicki A, Tulassay Z, et al. Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res [Internet]. 2006 [citado 14 Ago 2021];21(4):536-42. Disponible en: https://asbmr.onlinelibrary.wiley.com/doi/full/10.1359/jbmr.060101

Seeman E, Boonen S, Borgström F, Vellas B, Aquino JP, Semler J, et al. Five years treatment with strontium ranelate reduces vertebral and nonvertebral fractures and increases the number and quality of remaining life-years in women over 80 years of age. Bone [Internet]. 2010 [citado 14 Ago 2021];46(4):1038-42. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S8756328209020985

Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci [Internet]. 2001 [citado 14 Ago 2021];56(3):M146-56. Disponible en: https://academic.oup.com/biomedgerontology/article-abstract/56/3/M146/545770

Marquis P, Roux C, de la Loge C, Diaz-Curiel M, Cormier C, Isaia G, et al. Strontium ranelate prevents quality of life impairment in post-menopausal women with established vertebral osteoporosis. Osteoporos Int [Internet]. 2008 [citado 14 Ago 2021];19:503-10. Disponible en: https://link.springer.com/article/10.1007/s00198-007-0464-3

Brun LR, Galich AM, Vega E, Salerni H, Maffei L, Premrou, et al. Strontium ranelate effect on bone mineral density is modified by previous bisphosphonate treatment. Springer-Plus [Internet]. 2014 [citado 14 Ago 2021];3(676). Disponible en: https://springerplus.springeropen.com/articles/10.1186/2193-1801-3-676

Busse B, Jobke B, Hahn M, Priemel M, Niecke M, Seitz S, et al. Effects of strontium ranelate administration on bisphosphonate-altered hydroxyapatite: Matrix incorporation of strontium is accompanied by changes in mineralization and microstructure. Acta Biomater [Internet]. 2010 [citado 14 Ago 2021];6(12):4513-21. Disponible en: https://www.sciencedirect.com/science/article/pii/S1742706110003399

Jobke B, Burghardt AJ, Muche B, Hahn M, Semler J, Amling M, et al. Trabecular reorganization in consecutive iliac crest biopsies when switching from bisphosphonate to strontium ranelate treatment. PLoS One [Internet]. 2011 [citado 14 Ago 2021];6(8):e23638. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023638

European Medicines Agency. Good pharmacovigilance practices. [Internet] [citado 27 Ago 2021]. Disponible: https://www.ema.europa.eu/en/human-regulatory/post-authorisation/pharmacovigilance/good-pharmacovigilance-practices

European Medicines Agency. Assessment report – periodic safety update report (EPAR - Protelos-H-C-560-PSU31). 2013. [Internet] [citado 27 Ago 2021]. Disponible en: https://www.ema.europa.eu/en/documents/variation-report/protelos-h-c-560-psu-0031-epar-assessment-report-periodic-safety-update-report_en.pdf

Audran M, Jakob FJ, Palacios S, Brandi ML, Bröll H, Hamdy NA, et al. A large prospective European cohort study of patients treated with strontium ranelate and followed up over 3 years. Rheumatol Int [Internet]. 2013 [citado 14 Ago 2021];33:2231-9. Disponible en: https://link.springer.com/article/10.1007%2Fs00296-012-2594-y

Svanström H, Pasternak B, Hviid A. Use of strontium ranelate and risk of acute coronary syndrome: cohort study. Ann Rheum Dis [Internet]. 2014 [citado 14 Ago 2021];73(6):1037-43. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24651624/

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2022 Angela Lissette Guevara Acurio

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.